AS

Mathematics

MPC1

Unit: Pure Core 1

Mark scheme

June 2017

[^0]Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Key to mark scheme abbreviations	
M	mark is for method
m or dM	mark is dependent on one or mor
	M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, the principal examiner may suggest that we award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

	 Condone multiplication by $5-2 \sqrt{7}$ instead of $\times \frac{5-2 \sqrt{7}}{5-2 \sqrt{7}}$ for $\mathbf{M 1}$ only if subsequent working shows multiplication by both numerator and denominator - otherwise M0 For first A1 each term must be evaluated correctly but may be seen in a grid An error in the denominator such as $25+5 \sqrt{7}-5 \sqrt{7}-28=-3$ should be given $\mathbf{B 0}$ and it would then automatically lose the final A1cso May use $\frac{1+4 \sqrt{7}}{5+2 \sqrt{7}} \times \frac{2 \sqrt{7}-5}{2 \sqrt{7}-5}$ M1; numerator $=-5-20 \sqrt{7}+2 \sqrt{7}+56$ A1 etc Alternative: $\frac{1+4 \sqrt{7}}{5+2 \sqrt{7}}=m+n \sqrt{7}$ leading to $5 m+14 n=1 ; \quad 2 m+5 n=4 \mathbf{M 1}$ (one correct) A1(both correct) either $m=17$ or $n=-6 \mathbf{A 1 ;} \quad$ answer $=17-6 \sqrt{7} \quad \mathbf{A 1}$ cso (expression must be explicitly seen) Alternative 1 Multiply or divide each term by $\sqrt{5}$ obtaining 3 integer terms (possibly with one error) M1 3 correct integer terms; eg $x(45-30)=20 \quad \mathbf{A 1} ; x=\frac{4}{3} \quad \mathbf{A 1}$ Alternative $2 \quad x=\frac{\sqrt{80}}{9 \sqrt{5}-2 \sqrt{45}} \times \frac{9 \sqrt{5}+2 \sqrt{45}}{9 \sqrt{5}+2 \sqrt{45}} \quad \mathbf{M 1}=\frac{300}{225}$ OE A1 (integer/integer) $=\frac{4}{3} \quad \mathbf{A 1}$ Squaring: Do not allow final A1 unless justification for rejecting negative value May earn M1 for $x^{2}(k \sqrt{5})^{2}=80$ and A1 for $x^{2}=\frac{16}{9}$ OE			
(a)				

Q3	Solution	Mark	Total	Comment
(a) (b) (c)	$\left.\begin{array}{c} (-2)^{3}+b(-2)^{2}+c(-2)+24 \\ -8+4 b-2 c+24=0 \\ 2 b-c+8=0 \\ 3^{3}+3^{2} b+3 c+24=-30 \\ 27+9 b+3 c+24=-30 \\ 3 b+c+27=0 \end{array}\right]$ Correctly eliminating b or c from $2 b-c+8=0$ and an equation from (b) $\begin{gathered} b=-7 \quad \text { or } \quad c=-6 \\ b=-7 \quad \text { and } \quad c=-6 \end{gathered}$	M1 A1 M1 A1 M1 A1 A1	2 2 3	clear attempt at $\mathrm{p}(-2)$ AG must see powers of -2 simplified correctly and $=0$ appearing before last line clear attempt at $p(3)$ and $=-30$ ACF terms need not be collected but powers of 3 must be evaluated No ISW - mark their final equation PI by one correct answer
	Total		7	
(a)	Condone poor use of brackets if recovered on next line for both M1 and A1 Note that " $=0$ " must appear before last line; Example $p(-2)=-8+4 b-2 c+24 \Rightarrow 2 b-c+8=0$ scores M1 A0 M1 may also be earned for a full long division attempt by $(x+2)$ as far as the remainder in terms of b and c. M1 also for $\mathrm{p}(x)=(x+2)\left(x^{2}+d x+12\right) \quad b=2+d ; \quad c=2 d+12$ with $\mathbf{A 1}$ for completion. Terms must be exactly as printed answer but accept $0=2 b-c+8$ for A1.			

\begin{tabular}{|c|c|c|c|c|}
\hline Q4 \& Solution \& Mark \& Total \& Comment

\hline (a)

(b) \& \[
$$
\begin{gathered}
\begin{array}{c}
\operatorname{grad} A B=\frac{-6-5}{8--2} \quad \text { or } \quad \frac{5--6}{-2-8} \\
=-\frac{11}{10} \\
y-5=" \text { their" }-\frac{11}{10}(x--2) \\
\text { or } \quad y--6=" \text { their" }-\frac{11}{10}(x-8) \\
\\
11 x+10 y=28
\end{array} \\
\begin{array}{c}
(\operatorname{grad} A C=) \frac{k-4}{k+2} \text { or }(\operatorname{grad} B C=) \frac{k+7}{k-8} \\
\frac{k-4}{k+2} \times \frac{k+7}{k-8}=-1 \quad \text { OE } \\
k^{2}+3 k-28=-k^{2}+6 k+16 \\
\Rightarrow 2 k^{2}-3 k-44(=0) \\
(k+4)(2 k-11) \quad(=0) \\
k=-4, \quad k=5 \frac{1}{2} \quad \text { OE }
\end{array}
\end{gathered}
$$

\] \& | M1 |
| :--- |
| A1 |
| M1 |
| A1 |
| B1 |
| M1 |
| A1 |
| dM1 |
| A1 | \& 4

5 \& | correct unsimplified; PI by $-\frac{11}{10}$ |
| :--- |
| ft "their gradient" but must use A or B coordinates correctly |
| integer coefficients with x and y terms on one side and integer on other side |
| correct simplified expression eg $\frac{4-k}{-2-k}$ condone one error in one term |
| attempt at factorisation or correct use of formula for "their" quadratic |

\hline \& Total \& \& 9 \&

\hline (a)

(b) \& \multicolumn{4}{|l|}{| May earn second M1 for $y=$ "their" $-\frac{11}{10} x+c$ and attempt to find c using $x=-2, y=5$ or $x=8, y=-6$ For A1, condone any equivalent equation of the correct form such as $28=10 y+11 x$ or $-22 x-20 y=-56$ but not $11 x+10 y-28=0$ or any equation with non-integer coefficients |
| :--- |
| Alternative $\left\lfloor A C^{2}=\right\rfloor(k-4)^{2}+(k+2)^{2}$ or $\left\lfloor B C^{2}=\right\rfloor(k-8)^{2}+(k+7)^{2} \quad \mathbf{B} 1$ (may be under square root) Pythagoras $(k-4)^{2}+(k+2)^{2}+(k-8)^{2}+(k+7)^{2}=10^{2}+11^{2} \mathbf{M 1}$ (condone one error in one term) $k^{2}-8 k+16+k^{2}+4 k+4+k^{2}-16 k+64+k^{2}+14 k+49=221 \Rightarrow 4 k^{2}-6 k-88=0$ A1 etc |
| Allow dM1 for factors that would multiply out to give their k^{2} and constant terms. |
| To earn dM1 using formula then it must be correct for "their" quadratic and discriminant evaluated "correctly"; if correct quadratic used, you must see $\frac{3 \pm \sqrt{361}}{4}$ OE to award dM1 |}

\hline
\end{tabular}

Q7		Soluti	Total	Comment
(a) (i)	$x+x+(x+$	$)+(x+y)$	2	ACF eg $2 x+2(x+y)=15$
(ii)	$\begin{array}{r} {[S=]} \\ =x^{2} \\ =15 x \\ S=3(5 x \end{array}$	$\begin{aligned} & -y)^{2}-y^{2} \\ & (15-4 x) \\ & 3 x^{2} \\ & \left.x^{2}\right) \end{aligned}$	3	$[S=] x^{2}+2 x y$ or $x(x+y)+x y$ etc Sub their y into correct S expression AG be convinced
(b)(i)	$A-(x-$			must have both minus signs but A may be negative but not zero
	$6.25-$	$-2.5)^{2}$	2	$\begin{aligned} & p-(x-q)^{2} ; p=6.25, \quad q=2.5 \mathbf{O E} \\ & \frac{25}{4}-\left(x-\frac{5}{2}\right)^{2} \end{aligned}$
(ii)	$(\operatorname{Max} S=$	$3 \times$ "their	2	or $3\left(5 \times\right.$ "their" $q-$ "their" $\left.q^{2}\right)$ OE eg $\frac{75}{4}$ withhold A1 if 2 marks not scored in (b)(i)
			9	
(a)(i) Penalise candidates				
(ii)	Only allow dM1 if "their y " is of the form $a+b x$; expression need not be simplified so $S=(x+7.5-2 x)^{2}-(7.5-2 x)^{2}$, for example, earns dM1. Must have " $S=\ldots$ " for final A1 but allow $3\left(5 x-x^{2}\right)=S$; condone " $S \mathrm{~m}^{2}=\ldots$ " but not " $S^{2}=\ldots$ " Allow omission of " $S=\ldots$." on final line provided it appears on an earlier line with " $=$ " on all subsequent lines.			
(b)(i)	Example Example	$\begin{aligned} & -(x-2.5 \\ & -(x-2.5 \end{aligned}$	W any	incorrect rearrangement)
	Alternative for M1: $x^{2}-5 x=(x-2.5)^{2}-2.5^{2}$ but must have both sides of this identity			
(ii)	Allow SC B1 if 18.75 is clearly obtained via differentiation or NMS			

Q8	Solution	Mark	Total	Comment
(a) (b)		M1 A1 dM1 A1 B1ft M1 A1 M1 A1	4	two terms correct (may have x for t) all correct - must have t substituting $t=3$ into their $\frac{\mathrm{d} h}{\mathrm{~d} t}$ FT their $\frac{\mathrm{d} h}{\mathrm{~d} t}$ but must have " <0 " attempt at factors or correct use of formula use of sign diagram or sketch fractions must be simplified $\& \mathbf{B} 1$ earned for final A1 no ISW here
	Total		9	
(b)	For first M1, if using formula need to go as far as $\frac{59 \pm \sqrt{25}}{24}$ if inequality is correct and to a similar form if following through from their quadratic; if factorising quadratic (correct or incorrect) then factors should multiply out to give t^{2} and constant terms to earn first M1. For second M1, if critical values are correct then sign diagram or sketch must be correct with correct CVs marked in correct order. However, if CVs are not correct then second M1 can be earned for attempt at sketch or sign diagram but their CVs MUST be marked correctly on the diagram or sketch. For final A1, inequality must have t and no other letter. If B1 is earned and correct quadratic inequality is seen, final answer of $\frac{9}{4}<t<\frac{8}{3}$ (with or without working) scores final 4 marks. (A) $\frac{9}{4}<x<\frac{8}{3}$ (B) $t<\frac{8}{3}$ OR $\quad t>\frac{9}{4}$ (C) $t<\frac{8}{3}, t>\frac{9}{4}$ (D) $\frac{9}{4}, t, \frac{8}{3}$ (E) $\frac{54}{24}<t<\frac{64}{24} \mathbf{O E}$ with or without working, each score 3 marks (SC3) If B1 is NOT earned, then only the next 3 marks are available, namely M1, A1, M1 and A0 even if final inequality is correct. Example NMS $t<\frac{8}{3}, t<\frac{9}{4} \quad$ scores M1 A1 M0 (since both CVs are correct)			

[^0]: Version: 1.0 Final

